

HIGH-LEIT INLM

Intelligent power grid and charging infrastructure management for closed distribution systems of electronic bus depots

Full power for e-Mobility

The transition from internal combustion engines to electric drives aims to reduce harmful emissions, particularly in cities and urban areas. This also includes public transport. In contrast to public charging infrastructures, electronic buses are supplied with energy in the depots of public transport operators. The necessary charging capacities require closed distribution systems whose security, availability and grid compatible operation must be ensured by the particular public transport company. Intelligent systems are needed to fulfil these requirements and make optimum use of the available feed-in capacity. These systems relieve power grids as they offer automated processes and thus make sure that e-mobility does not run out of power.

Your tasks

Electricity for your charging infrastructure is usually supplied by an upstream medium voltage distribution system – ie by public utilities. The system determines the maximum transfer capacity. Based on this you have to

- distribute power and monitor loads to ensure that the current charging capacity of all charging points never exceeds the transfer capacity at the feed-in point. This may prove challenging, but automated load management helps you to face this challenge successfully.
- monitor operations and distribute loads to avoid selective overloads of system components such as cables and transformers.
- assume duties. As 'independent' closed distribution system operator you are responsible for
 - the security of people and installations,
 - the availability of your network and
 - the stability of the power grid.

Our solution

With **HIGH-LEIT iNLM**, controlling and monitoring can be realized easily. Our solution combines the grid control system **HIGH-LEIT** with RTUs from the **ACOS 7 series** and compact protection/control devices from the **ACOS 300 series**. Charging points are connected to the integrated charging infrastructure management system via OCPP (Open Charge Point Protocol).

This enables simple and efficient control as well as monitoring of your closed distribution network and helps you to avoid exceeding the permitted feed-in capacity.

In a nutshell – our complete solution

Our answers to your questions

- Where can I find a charging point and is it available?
 - A geographic map shows all charging points and indicates their availability with traffic light colours (green, yellow, red).
 - HIGH-LEIT INLM also records important information such as status and charging current of the charging point.
- Is charging still possible or have I already reached the allowed total capacity?
 - HIGH-LEIT INLM records load flows, aggregates them for the particular charging point and sends alarms if limits are going to be exceeded. In case further charging would exceed the agreed capacity, the charging request will be denied or charging capacities of other charging points will be reduced proactively.
- What can I do in case of a bottleneck?
 - Our solution automatically clears local bottlenecks of the power grid by reducing the charging capacity and sends a corresponding message.
- What is the status of my network and of my installations?
 - Be it control gear, protection devices or the charging infrastructure HIGH-LEIT iNLM monitors your system components, reports problems and helps you to eliminate faults.
 - Faults in the network are detected by, for example, protection equipment and the affected network section is switched off. Integrated control features of HIGH-LEIT INLM offer remote control and thus enable recovery as quick as possible.
- How can I invoice the charging of buses?
 - HIGH-LEIT INLM logs the individual charging processes and helps to invoice charging point users or evaluate the costs related to an accounting unit.
- When do my charging stations have to be serviced?
 - We offer you the option to digitize some of your systems and assets or even all and integrate them
 into our **360° asset management system**. This will facilitate planning, execution and documentation
 of maintenance work.

What do you see?

Where is the charging station? Is the charging point available?

The system automatically updates the colouring of system components and thus the status of charging points (and possible charging clusters) is visible at all times. Dispatchers are therefore able to direct vehicles that need charging to the respective stations.

Example: site plan of a depot, showing charging points and their availability within the system (availability may vary for systemic or operational reasons).

What is the current state of the power grid? Did faults occur or are there any limitations of availability?

Network and installed components are monitored via individually generated displays, which do not only show schematic overviews of the grid but also switching states of all primary switchgear (power switches, disconnectors, earth electrodes, etc) and related measured values. You can control primary switchgear directly via dialog boxes on the screen.

Example: Overview of a medium-voltage grid

What kind of faults or events occurred?

All operational as well as system events are logged chronologically in the **Event log**. The **Alarm list** gives an overview of all pending faults/alarms. **Event log** and **Alarm list** are sorted automatically and provide numerous filter as well as setting options.

1	*	🖌 🔄 Filter: Kein Filte	. 🗘 .						=	
	86T. •	Letzte Stunde								
afo	Prio	LS-Zeit	Textwort 1	Textwort 2	Textwort 3	Textwort 4	Textwort 5	Textwort Zustand	Zusatztext	
		05.11.2018 13:25:06,951	Anmeldung v	on: sei an Arbeitsplatz 3						
	W	05.11.2018 13:26:24,797	SNH	ONS 1235	Kaiserstr		Überlast	kommt	н	
1	W	06.11.2018 13/26/24,997	SNH	ONS 1235	Kaiserstr		Überlast	kommt	H+	
	5	06.11.2018 13:26:35,631	SNH	Kaiserstr. 18	Ladestation		Störung	kommt	н	
1	5	05.11.2018 13:26:36,087	SNH	Kaiserstr. 18	Ladestation		Störung	kommt	H+	
	8	05.11.2018 13:27:19,288	Topologische Verriegelung "WARNUNG: Verbraucher wird abgeschaltet (VPSAvers4)" entriegelt/entilastet							
	B	05.11.2018 13:27:19,288	SWH	UW Mitte	Phillip-Reis-Str.	Leistungsschalter	Zelle 14	aus		
		05.11.2018 13:27:20,038	SWH	UW Mitte	Phillip-Reis-Str.	Leistungsschalter	Zelle 14	805		
	8	05.11.2018 13:27:20,038	SWH	UW Mitte	Phillip-Reis-Str.	Leistungsschalter	Zelle 14	aus		
	B	05.11.2018 13:27:20,295	SWH	UW Mitte	Phillip-Reis-Str.	Wirkleistung P	Zelle 14	auf 0.00 H+		
	B	06.11.2018 13:27:43,281	SNH	ONS 1235	Kaiserstr		Überlast	geht	н	
		05.11.2018 13:27:43,781	SNH	ONS 1235	Kaiserstr		Überlast	geht	H+	
		05.11.2018 13:29:03,942	SNH	Kaiserstr. 18	Ladestation		Störung	geht	н	
	B	05.11.2018 13:29:04.101	SNH	Kaiserstr. 18	Ladestation		Salouna	oeht	He	

Example: Event log

Which load flows have been recorded in the past?

All recorded measured values are archived and permanently available for subsequent evaluations.

Example: load flow of charging current

Where can I find an overview on available information?

The charging infrastructure management is responsible for all data exchange with the charging infrastructure. The charging infrastructure management provides status details (charging point status, fault alarms), control information (eg about commands to reduce load or remote access for fault clearance), user information (number of charging processes and consumption), as well as authorization details and an overview on how the charging infrastructure is linked with market partners (access rights, billing) if applicable. Data is provided in spreadsheet format, via dashboard or data exports.

	Dashboard Lodepor	nkte infrastrukturne	nogenant • Dutzerman	operant -	Portner +	Hdmin +	jvoelkel +	1	-
Lade				89) 199		4			
CDRs	Reports	764 (Nobelstra	iße 18, 76275					Report and	ordern
Ladesäule	EMP/CPO	Fittlingen)						Validierung	
		Betreiber	EVSEID	Konnektor	Direktzahlun	9			0
Lausave		IDS eCharging	DE*IDS*E764*01	1	76401				
784	EN EMP: Ettlingen Enerrgie	Vertrieb	EMAID	RFID	Kartenaufdri	JCK		0	V
	CP CPO: IDS eCharging	Ettlingen Energie	DEEE2326556277	0E198FF5	236556277				
784	EN EMP: Ettlingen Enerrgie	Zähler Start	Meter Start					۲	▽
	CP CPO: IDS eCharging	20.08.2018 09:15:41	20530						
		< Zähler Stop	Meter Stop			>		0	-
764	EV cwo: complete coerrigie	20.08.2018 09:21:54	20830						~
	CP CPO: IDS eCharging	Erstellt	Validierung						
784	EN EMP: Ettlingen Enerrgie	20.08.2018 09:22:46	Validiert					۲	V
	CP CPO: ID S eCharging	Bernehelenste	Madamarakakan lant		We like a stand				
764	EA EMP: Ettlingen Enerrgie	Pauschalpreis	verbrauchsbasien		Zeubasien			0	V
	CP CPO: IDS eCharging	Zusätzliche Preisinf	ormationen			1			
		40 Cent/kWh		0					
764	EV Cares consider creative	-		10.01.00	10 60 60				~
	CPO: ID'S eCharging			13:34:56	13.3.2.23	22177 Hamburg			
4200	E& EMP: Ettlingen Enerrgie	1198FF5	DEHHE238566277	20.08.2018	20.08.2018	Schmarler Damm	5	٢	V

Example: charging data